Enum OpUsage

pub enum OpUsage {
    Normal,
    Loopback,
    NxDomain,
}
Expand description

DNS Server Operators:

Does this reserved Special-Use Domain Name have any potential impact on DNS server operators? If they try to configure their authoritative DNS server as authoritative for this reserved name, will compliant name server software reject it as invalid? Do DNS server operators need to know about that and understand why? Even if the name server software doesn’t prevent them from using this reserved name, are there other ways that it may not work as expected, of which the DNS server operator should be aware?

Variants§

§

Normal

DNS server operators SHOULD, if they are using private addresses, configure their authoritative DNS servers to act as authoritative for these names.

DNS server operators SHOULD, if they are using test names, configure their authoritative DNS servers to act as authoritative for test names.

§

Loopback

DNS server operators SHOULD be aware that the effective RDATA for localhost names is defined by protocol specification and cannot be modified by local configuration.

§

NxDomain

DNS server operators SHOULD be aware that the effective RDATA for “invalid” names is defined by protocol specification to be nonexistent and cannot be modified by local configuration.

Trait Implementations§

§

impl Clone for OpUsage

§

fn clone(&self) -> OpUsage

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl PartialEq for OpUsage

§

fn eq(&self, other: &OpUsage) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl Copy for OpUsage

§

impl Eq for OpUsage

§

impl StructuralPartialEq for OpUsage

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FutureExt for T

§

fn with_context(self, otel_cx: Context) -> WithContext<Self>

Attaches the provided Context to this type, returning a WithContext wrapper. Read more
§

fn with_current_context(self) -> WithContext<Self>

Attaches the current Context to this type, returning a WithContext wrapper. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> PolicyExt for T
where T: ?Sized,

§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
§

impl<T, U> RamaFrom<T> for U
where U: From<T>,

§

fn rama_from(value: T) -> U

§

impl<T, U, CrateMarker> RamaInto<U, CrateMarker> for T
where U: RamaFrom<T, CrateMarker>,

§

fn rama_into(self) -> U

§

impl<T, U> RamaTryFrom<T> for U
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

§

fn rama_try_from(value: T) -> Result<U, <U as RamaTryFrom<T>>::Error>

§

impl<T, U, CrateMarker> RamaTryInto<U, CrateMarker> for T
where U: RamaTryFrom<T, CrateMarker>,

§

type Error = <U as RamaTryFrom<T, CrateMarker>>::Error

§

fn rama_try_into(self) -> Result<U, <U as RamaTryFrom<T, CrateMarker>>::Error>

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ErasedDestructor for T
where T: 'static,