Struct NonEmptyVec
pub struct NonEmptyVec<T> {
pub head: T,
pub tail: Vec<T>,
}Expand description
Non-empty vector.
Fields§
§head: T§tail: Vec<T>Implementations§
§impl<T> NonEmptyVec<T>
impl<T> NonEmptyVec<T>
pub const fn new(e: T) -> NonEmptyVec<T>
pub const fn new(e: T) -> NonEmptyVec<T>
Alias for NonEmptyVec::singleton.
pub fn as_ref(&self) -> NonEmptyVec<&T>
pub fn as_ref(&self) -> NonEmptyVec<&T>
Converts from &NonEmptyVec<T> to NonEmptyVec<&T>.
pub fn collect<I>(iter: I) -> Option<NonEmptyVec<T>>where
I: IntoIterator<Item = T>,
pub fn collect<I>(iter: I) -> Option<NonEmptyVec<T>>where
I: IntoIterator<Item = T>,
Attempt to convert an iterator into a NonEmptyVec vector.
Returns None if the iterator was empty.
pub const fn singleton(head: T) -> NonEmptyVec<T>
pub const fn singleton(head: T) -> NonEmptyVec<T>
Create a new non-empty list with an initial element.
pub fn first_mut(&mut self) -> &mut T
pub fn first_mut(&mut self) -> &mut T
Get the mutable reference to the first element. Never fails.
§Examples
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::new(42);
let head = non_empty.first_mut();
*head += 1;
assert_eq!(non_empty.first(), &43);
let mut non_empty = NonEmptyVec::from((1, vec![4, 2, 3]));
let head = non_empty.first_mut();
*head *= 42;
assert_eq!(non_empty.first(), &42);pub fn tail(&self) -> &[T]
pub fn tail(&self) -> &[T]
Get the possibly-empty tail of the list.
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new(42);
assert_eq!(non_empty.tail(), &[]);
let non_empty = NonEmptyVec::from((1, vec![4, 2, 3]));
assert_eq!(non_empty.tail(), &[4, 2, 3]);pub fn push(&mut self, e: T)
pub fn push(&mut self, e: T)
Push an element to the end of the list.
pub fn insert(&mut self, index: usize, element: T)
pub fn insert(&mut self, index: usize, element: T)
Inserts an element at position index within the vector, shifting all elements after it to the right.
§Panics
Panics if index > len.
§Examples
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::from((1, vec![2, 3]));
non_empty.insert(1, 4);
assert_eq!(non_empty, NonEmptyVec::from((1, vec![4, 2, 3])));
non_empty.insert(4, 5);
assert_eq!(non_empty, NonEmptyVec::from((1, vec![4, 2, 3, 5])));
non_empty.insert(0, 42);
assert_eq!(non_empty, NonEmptyVec::from((42, vec![1, 4, 2, 3, 5])));pub fn len_nonzero(&self) -> NonZero<usize>
pub fn len_nonzero(&self) -> NonZero<usize>
Gets the length of the list as a NonZeroUsize.
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
Check whether an element is contained in the list.
use rama_utils::collections::NonEmptyVec;
let mut l = NonEmptyVec::from((42, vec![36, 58]));
assert!(l.contains(&42));
assert!(!l.contains(&101));pub fn truncate(&mut self, len: NonZero<usize>)
pub fn truncate(&mut self, len: NonZero<usize>)
Truncate the list to a certain size. Must be greater than 0.
pub fn iter(&self) -> NonEmptyVecIter<'_, T> ⓘ
pub fn iter(&self) -> NonEmptyVecIter<'_, T> ⓘ
use rama_utils::collections::NonEmptyVec;
let mut l = NonEmptyVec::from((42, vec![36, 58]));
let mut l_iter = l.iter();
assert_eq!(l_iter.len(), 3);
assert_eq!(l_iter.next(), Some(&42));
assert_eq!(l_iter.next(), Some(&36));
assert_eq!(l_iter.next(), Some(&58));
assert_eq!(l_iter.next(), None);pub fn iter_mut(&mut self) -> impl DoubleEndedIterator
pub fn iter_mut(&mut self) -> impl DoubleEndedIterator
use rama_utils::collections::NonEmptyVec;
let mut l = NonEmptyVec::new(42);
l.push(36);
l.push(58);
for i in l.iter_mut() {
*i *= 10;
}
let mut l_iter = l.iter();
assert_eq!(l_iter.next(), Some(&420));
assert_eq!(l_iter.next(), Some(&360));
assert_eq!(l_iter.next(), Some(&580));
assert_eq!(l_iter.next(), None);pub fn from_slice(slice: &[T]) -> Option<NonEmptyVec<T>>where
T: Clone,
pub fn from_slice(slice: &[T]) -> Option<NonEmptyVec<T>>where
T: Clone,
Often we have a Vec (or slice &[T]) but want to ensure that it is NonEmptyVec before
proceeding with a computation. Using from_slice will give us a proof
that we have a NonEmptyVec in the Some branch, otherwise it allows
the caller to handle the None case.
§Example Use
use rama_utils::collections::NonEmptyVec;
let non_empty_vec = NonEmptyVec::from_slice(&[1, 2, 3, 4, 5]);
assert_eq!(non_empty_vec, Some(NonEmptyVec::from((1, vec![2, 3, 4, 5]))));
let empty_vec: Option<NonEmptyVec<&u32>> = NonEmptyVec::from_slice(&[]);
assert!(empty_vec.is_none());pub fn from_vec(vec: Vec<T>) -> Option<NonEmptyVec<T>>
pub fn from_vec(vec: Vec<T>) -> Option<NonEmptyVec<T>>
Often we have a Vec (or slice &[T]) but want to ensure that it is NonEmptyVec before
proceeding with a computation. Using from_vec will give us a proof
that we have a NonEmptyVec in the Some branch, otherwise it allows
the caller to handle the None case.
This version will consume the Vec you pass in. If you would rather pass the data as a
slice then use NonEmptyVec::from_slice.
§Example Use
use rama_utils::collections::NonEmptyVec;
let non_empty_vec = NonEmptyVec::from_vec(vec![1, 2, 3, 4, 5]);
assert_eq!(non_empty_vec, Some(NonEmptyVec::from((1, vec![2, 3, 4, 5]))));
let empty_vec: Option<NonEmptyVec<&u32>> = NonEmptyVec::from_vec(vec![]);
assert!(empty_vec.is_none());pub fn split_first(&self) -> (&T, &[T])
pub fn split_first(&self) -> (&T, &[T])
Deconstruct a NonEmptyVec into its head and tail.
This operation never fails since we are guaranteed
to have a head element.
§Example Use
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
// Guaranteed to have the head and we also get the tail.
assert_eq!(non_empty.split_first(), (&1, &[2, 3, 4, 5][..]));
let non_empty = NonEmptyVec::new(1);
// Guaranteed to have the head element.
assert_eq!(non_empty.split_first(), (&1, &[][..]));pub fn split(&self) -> (&T, &[T], Option<&T>)
pub fn split(&self) -> (&T, &[T], Option<&T>)
Deconstruct a NonEmptyVec into its first, last, and
middle elements, in that order.
If there is only one element then last is None.
§Example Use
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
// When there are two or more elements, the last element is represented
// as a `Some`. Elements preceding it, except for the first, are returned
// in the middle.
assert_eq!(non_empty.split(), (&1, &[2, 3, 4][..], Some(&5)));
let non_empty = NonEmptyVec::new(1);
// The last element is `None` when there's only one element.
assert_eq!(non_empty.split(), (&1, &[][..], None));pub fn append(&mut self, other: &mut Vec<T>)
pub fn append(&mut self, other: &mut Vec<T>)
Append a Vec to the tail of the NonEmptyVec.
§Example Use
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::new(1);
let mut vec = vec![2, 3, 4, 5];
non_empty.append(&mut vec);
let mut expected = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
assert_eq!(non_empty, expected);pub fn map<U, F>(self, f: F) -> NonEmptyVec<U>where
F: FnMut(T) -> U,
pub fn map<U, F>(self, f: F) -> NonEmptyVec<U>where
F: FnMut(T) -> U,
A structure preserving map. This is useful for when
we wish to keep the NonEmptyVec structure guaranteeing
that there is at least one element. Otherwise, we can
use non_empty_vec.iter().map(f).
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
let squares = non_empty.map(|i| i * i);
let expected = NonEmptyVec::from((1, vec![4, 9, 16, 25]));
assert_eq!(squares, expected);pub fn try_map<E, U, F>(self, f: F) -> Result<NonEmptyVec<U>, E>
pub fn try_map<E, U, F>(self, f: F) -> Result<NonEmptyVec<U>, E>
A structure preserving, fallible mapping function.
pub fn flat_map<U, F>(self, f: F) -> NonEmptyVec<U>where
F: FnMut(T) -> NonEmptyVec<U>,
pub fn flat_map<U, F>(self, f: F) -> NonEmptyVec<U>where
F: FnMut(T) -> NonEmptyVec<U>,
When we have a function that goes from some T to a NonEmptyVec<U>,
we may want to apply it to a NonEmptyVec<T> but keep the structure flat.
This is where flat_map shines.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
let windows = non_empty.flat_map(|i| {
let mut next = NonEmptyVec::new(i + 5);
next.push(i + 6);
next
});
let expected = NonEmptyVec::from((6, vec![7, 7, 8, 8, 9, 9, 10, 10, 11]));
assert_eq!(windows, expected);pub fn flatten(full: NonEmptyVec<NonEmptyVec<T>>) -> NonEmptyVec<T>
pub fn flatten(full: NonEmptyVec<NonEmptyVec<T>>) -> NonEmptyVec<T>
Flatten nested NonEmptyVecs into a single one.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((
NonEmptyVec::from((1, vec![2, 3])),
vec![NonEmptyVec::from((4, vec![5]))],
));
let expected = NonEmptyVec::from((1, vec![2, 3, 4, 5]));
assert_eq!(NonEmptyVec::flatten(non_empty), expected);pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
Binary searches this sorted non-empty vector for a given element.
If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned.
If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
assert_eq!(non_empty.binary_search(&0), Ok(0));
assert_eq!(non_empty.binary_search(&13), Ok(9));
assert_eq!(non_empty.binary_search(&4), Err(7));
assert_eq!(non_empty.binary_search(&100), Err(13));
let r = non_empty.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });If you want to insert an item to a sorted non-empty vector, while maintaining sort order:
use rama_utils::collections::NonEmptyVec;
let mut non_empty = NonEmptyVec::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
let num = 42;
let idx = non_empty.binary_search(&num).unwrap_or_else(|x| x);
non_empty.insert(idx, num);
assert_eq!(non_empty, NonEmptyVec::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55])));pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
Binary searches this sorted non-empty with a comparator function.
The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.
If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.
§Examples
Looks up a series of four elements. The first is found, with a uniquely determined
position; the second and third are not found; the fourth could match any position in [1,4].
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((0, vec![1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]));
let seek = 0;
assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(0));
let seek = 13;
assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(non_empty.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = non_empty.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F,
) -> Result<usize, usize>
pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
Binary searches this sorted non-empty vector with a key extraction function.
Assumes that the vector is sorted by the key.
If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.
§Examples
Looks up a series of four elements in a non-empty vector of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::from((
(0, 0),
vec![(2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)]
));
assert_eq!(non_empty.binary_search_by_key(&0, |&(a,b)| b), Ok(0));
assert_eq!(non_empty.binary_search_by_key(&13, |&(a,b)| b), Ok(9));
assert_eq!(non_empty.binary_search_by_key(&4, |&(a,b)| b), Err(7));
assert_eq!(non_empty.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = non_empty.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });pub fn maximum(&self) -> &Twhere
T: Ord,
pub fn maximum(&self) -> &Twhere
T: Ord,
Returns the maximum element in the non-empty vector.
This will return the first item in the vector if the tail is empty.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new(42);
assert_eq!(non_empty.maximum(), &42);
let non_empty = NonEmptyVec::from((1, vec![-34, 42, 76, 4, 5]));
assert_eq!(non_empty.maximum(), &76);pub fn minimum(&self) -> &Twhere
T: Ord,
pub fn minimum(&self) -> &Twhere
T: Ord,
Returns the minimum element in the non-empty vector.
This will return the first item in the vector if the tail is empty.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new(42);
assert_eq!(non_empty.minimum(), &42);
let non_empty = NonEmptyVec::from((1, vec![-34, 42, 76, 4, 5]));
assert_eq!(non_empty.minimum(), &-34);pub fn maximum_by<F>(&self, compare: F) -> &T
pub fn maximum_by<F>(&self, compare: F) -> &T
Returns the element that gives the maximum value with respect to the specified comparison function.
This will return the first item in the vector if the tail is empty.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new((0, 42));
assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
let non_empty = NonEmptyVec::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
assert_eq!(non_empty.maximum_by(|(k, _), (l, _)| k.cmp(l)), &(4, 42));pub fn minimum_by<F>(&self, compare: F) -> &T
pub fn minimum_by<F>(&self, compare: F) -> &T
Returns the element that gives the minimum value with respect to the specified comparison function.
This will return the first item in the vector if the tail is empty.
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new((0, 42));
assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 42));
let non_empty = NonEmptyVec::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
assert_eq!(non_empty.minimum_by(|(k, _), (l, _)| k.cmp(l)), &(0, 76));pub fn maximum_by_key<U, F>(&self, f: F) -> &T
pub fn maximum_by_key<U, F>(&self, f: F) -> &T
Returns the element that gives the maximum value with respect to the specified function.
This will return the first item in the vector if the tail is empty.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new((0, 42));
assert_eq!(non_empty.maximum_by_key(|(k, _)| *k), &(0, 42));
let non_empty = NonEmptyVec::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
assert_eq!(non_empty.maximum_by_key(|(k, _)| *k), &(4, 42));
assert_eq!(non_empty.maximum_by_key(|(k, _)| -k), &(0, 76));pub fn minimum_by_key<U, F>(&self, f: F) -> &T
pub fn minimum_by_key<U, F>(&self, f: F) -> &T
Returns the element that gives the minimum value with respect to the specified function.
This will return the first item in the vector if the tail is empty.
§Examples
use rama_utils::collections::NonEmptyVec;
let non_empty = NonEmptyVec::new((0, 42));
assert_eq!(non_empty.minimum_by_key(|(k, _)| *k), &(0, 42));
let non_empty = NonEmptyVec::from(((2, 1), vec![(2, -34), (4, 42), (0, 76), (1, 4), (3, 5)]));
assert_eq!(non_empty.minimum_by_key(|(k, _)| *k), &(0, 76));
assert_eq!(non_empty.minimum_by_key(|(k, _)| -k), &(4, 42));pub fn sort(&mut self)where
T: Ord,
pub fn sort(&mut self)where
T: Ord,
Sorts the NonEmptyVec].
The implementation uses slice::sort for the tail and then checks where the
head belongs. If the head is already the smallest element, this should be as fast as sorting a
slice. However, if the head needs to be inserted, then it incurs extra cost for removing
the new head from the tail and adding the old head at the correct index.
§Examples
use rama_utils::collections::non_empty_vec;
let mut non_empty = non_empty_vec![-5, 4, 1, -3, 2];
non_empty.sort();
assert!(non_empty == non_empty_vec![-5, -3, 1, 2, 4]);Trait Implementations§
§impl<T> Clone for NonEmptyVec<T>where
T: Clone,
impl<T> Clone for NonEmptyVec<T>where
T: Clone,
§fn clone(&self) -> NonEmptyVec<T>
fn clone(&self) -> NonEmptyVec<T>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more§impl<T> Debug for NonEmptyVec<T>where
T: Debug,
impl<T> Debug for NonEmptyVec<T>where
T: Debug,
§impl<T> Default for NonEmptyVec<T>where
T: Default,
impl<T> Default for NonEmptyVec<T>where
T: Default,
§fn default() -> NonEmptyVec<T>
fn default() -> NonEmptyVec<T>
§impl<'de, T> Deserialize<'de> for NonEmptyVec<T>where
T: Deserialize<'de>,
impl<'de, T> Deserialize<'de> for NonEmptyVec<T>where
T: Deserialize<'de>,
§fn deserialize<__D>(
__deserializer: __D,
) -> Result<NonEmptyVec<T>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<NonEmptyVec<T>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
§impl<A> Extend<A> for NonEmptyVec<A>
impl<A> Extend<A> for NonEmptyVec<A>
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = A>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = A>,
Source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one)Source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one)§impl<T> From<(T, Vec<T>)> for NonEmptyVec<T>
impl<T> From<(T, Vec<T>)> for NonEmptyVec<T>
§fn from(_: (T, Vec<T>)) -> NonEmptyVec<T>
fn from(_: (T, Vec<T>)) -> NonEmptyVec<T>
Turns a pair of an element and a Vec into a NonEmptyVec.
§impl<T> From<NonEmptyVec<T>> for (T, Vec<T>)
impl<T> From<NonEmptyVec<T>> for (T, Vec<T>)
§fn from(non_empty_vec: NonEmptyVec<T>) -> (T, Vec<T>)
fn from(non_empty_vec: NonEmptyVec<T>) -> (T, Vec<T>)
Turns a non-empty list into a Vec.
§impl<T> From<NonEmptyVec<T>> for Vec<T>
impl<T> From<NonEmptyVec<T>> for Vec<T>
§fn from(non_empty_vec: NonEmptyVec<T>) -> Vec<T>
fn from(non_empty_vec: NonEmptyVec<T>) -> Vec<T>
Turns a non-empty list into a Vec.
§impl<T> Hash for NonEmptyVec<T>where
T: Hash,
impl<T> Hash for NonEmptyVec<T>where
T: Hash,
§impl<T> Index<usize> for NonEmptyVec<T>
impl<T> Index<usize> for NonEmptyVec<T>
§impl<T> IndexMut<usize> for NonEmptyVec<T>
impl<T> IndexMut<usize> for NonEmptyVec<T>
§impl<'a, T> IntoIterator for &'a NonEmptyVec<T>
impl<'a, T> IntoIterator for &'a NonEmptyVec<T>
§impl<T> IntoIterator for NonEmptyVec<T>
impl<T> IntoIterator for NonEmptyVec<T>
§type IntoIter = Chain<Once<T>, IntoIter<<NonEmptyVec<T> as IntoIterator>::Item>>
type IntoIter = Chain<Once<T>, IntoIter<<NonEmptyVec<T> as IntoIterator>::Item>>
§fn into_iter(self) -> <NonEmptyVec<T> as IntoIterator>::IntoIter
fn into_iter(self) -> <NonEmptyVec<T> as IntoIterator>::IntoIter
§impl<T> Ord for NonEmptyVec<T>where
T: Ord,
impl<T> Ord for NonEmptyVec<T>where
T: Ord,
§impl<T> PartialEq for NonEmptyVec<T>where
T: PartialEq,
impl<T> PartialEq for NonEmptyVec<T>where
T: PartialEq,
§impl<T> PartialOrd for NonEmptyVec<T>where
T: PartialOrd,
impl<T> PartialOrd for NonEmptyVec<T>where
T: PartialOrd,
§impl<T> Serialize for NonEmptyVec<T>where
T: Serialize,
impl<T> Serialize for NonEmptyVec<T>where
T: Serialize,
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl<T> TryFrom<Vec<T>> for NonEmptyVec<T>
impl<T> TryFrom<Vec<T>> for NonEmptyVec<T>
§type Error = NonEmptyVecEmptyError
type Error = NonEmptyVecEmptyError
§fn try_from(
vec: Vec<T>,
) -> Result<NonEmptyVec<T>, <NonEmptyVec<T> as TryFrom<Vec<T>>>::Error>
fn try_from( vec: Vec<T>, ) -> Result<NonEmptyVec<T>, <NonEmptyVec<T> as TryFrom<Vec<T>>>::Error>
impl<T> Eq for NonEmptyVec<T>where
T: Eq,
impl<T> StructuralPartialEq for NonEmptyVec<T>
Auto Trait Implementations§
impl<T> Freeze for NonEmptyVec<T>where
T: Freeze,
impl<T> RefUnwindSafe for NonEmptyVec<T>where
T: RefUnwindSafe,
impl<T> Send for NonEmptyVec<T>where
T: Send,
impl<T> Sync for NonEmptyVec<T>where
T: Sync,
impl<T> Unpin for NonEmptyVec<T>where
T: Unpin,
impl<T> UnwindSafe for NonEmptyVec<T>where
T: UnwindSafe,
Blanket Implementations§
§impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
§impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key and return true if they are equal.§impl<T> FutureExt for T
impl<T> FutureExt for T
§fn with_context(self, otel_cx: Context) -> WithContext<Self> ⓘ
fn with_context(self, otel_cx: Context) -> WithContext<Self> ⓘ
§fn with_current_context(self) -> WithContext<Self> ⓘ
fn with_current_context(self) -> WithContext<Self> ⓘ
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> PolicyExt for Twhere
T: ?Sized,
impl<T> PolicyExt for Twhere
T: ?Sized,
§fn and<P, B, E>(self, other: P) -> And<T, P>
fn and<P, B, E>(self, other: P) -> And<T, P>
Policy that returns Action::Follow only if self and other return
Action::Follow. Read more